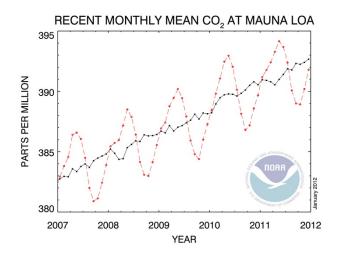


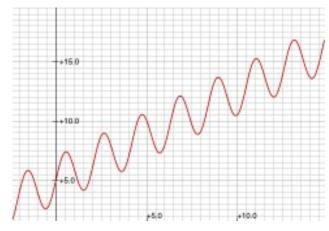
Mathematics Tutorial Series

Differential Calculus

Trigonometric Functions I

The most important fact about trig functions is that they are **periodic**. This means that after some period, the whole graph just repeats.



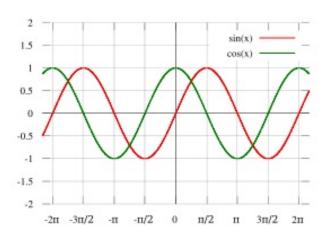

This makes these functions important for any **mathematical model** that tries to describe a periodic phenomenon.

Examples:

- 1. Any wave phenomenon like radio, microwave, Wi-Fi, elementary particles
- 2. Blood pressure as the heart beats
- 3. Orbits and pendulums
- 4. Tides and tidal power
- 5. Road traffic flows on a daily cycle
- 6. Annual heating cost of your home

To model and understand any of these topics, you will have to use trig functions.

$$y = 5 + 0.75x + 2\sin(3x)$$


The main functions are $\sin x$, $\cos x$ and $\tan x$.

"sin" is short for "sine" – hence the name.

It is customary to measure the variable x in **radians** when doing calculus. The reason is simple. We want the derivative of $\sin x$ to be $\cos x$. If we don't work in radians this isn't true.

This means that the period of $\sin x$ and of $\cos x$ is 2π .

$\sin 0 = 0$	$\cos 0 = 1$
$\sin\frac{\pi}{2} = 1$	$\cos\frac{\pi}{2} = 0$
$\sin \pi = 0$	$\cos \pi = -1$
$\sin\frac{3\pi}{2} = -1$	$\cos\frac{3\pi}{2} = 0$
$\sin 2\pi = 0$	$\cos 2\pi = 1$

$$-1 \leq sin \ x \leq +1$$

$$-1 \leq cos \ x \leq +1$$

How do you calculate a value for sin *x*?

[&]quot;cos" is short for "cosine"

[&]quot;tan" is short for "tangent"

The Unit Circle

A useful fact about sin and cos is that these functions give the coordinates of the points on the unit circle.

For each angle t the point $(\cos t, \sin t)$ is on the circle $x^2 + y^2 = 1$.

Interactive Mathematics site: www.intmath.com

Sine function demo

Trig Identities - very handy

$$\sin^2 x = (\sin x)(\sin x)$$

$$\cos^2 x + \sin^2 x = 1$$

$$\cos(x + h) = \cos x \cos h - \sin x \sin h$$

$$\cos 2x = \cos^2 x - \sin^2 x$$

$$\sin(x + h) = \sin x \cos h + \cos x \sin h$$

$$\sin 2x = 2 \cdot \sin x \cdot \cos x$$

For example, suppose we want $\sin\left(\frac{\pi}{12}\right)$.

$$Now \frac{\pi}{12} = \frac{\pi}{3} - \frac{\pi}{4}$$

So
$$\sin\left(\frac{\pi}{12}\right) = \sin\left(\frac{\pi}{3} - \frac{\pi}{4}\right)$$

$$= \sin\frac{\pi}{3}\cos\frac{-\pi}{4} + \cos\frac{\pi}{3}\sin\frac{-\pi}{4}$$

$$= \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{2}}{2} + \frac{1}{2} \cdot \frac{-\sqrt{2}}{2}$$

$$= \frac{\sqrt{6} - \sqrt{2}}{4}$$

Summary

- 1. Trig functions are periodic
- 2. In calculus, we work in radians for measuring angles
- 3. Trig functions are used to model periodic phenomena
- 4. $\cos^2 x + \sin^2 x = 1$
- **5.** There are a few trig identities that can be useful
- 6. The functions $\sin x$ and $\cos x$ are periodic with period 2π .
- 7. For each function, the variable x can take any real value and the value y is in the range $-1 \le y \le +1$.
- **8.** Special values: $\sin 0 = 0$ and $\cos 0 = 1$